21 min read

Scrabble numbers

I was reading one of Ian Stewart’s books of popular maths, and I found a potentially incomplete solution to a puzzle.

Given the (English) Scrabble tile set, do any numbers give their own score?

“One” certainly doesn’t, since “O”,“N”,“E”each score 1 point, and \(3 \neq 1\).

For various reasons, you can see that you don’t need to test every number:

  • Scrabble scores are non-negative integers.
  • Score increases as word length increases. The length of the name of a number increases approximately by powers of ten. (Or logarithmically.)

So “zero”, “one”, score more points than their number, while “one thousand” definitely scores less than itself. (And there’s no word separator in Scrabble. Anyway “thousand” definitely scores less than 1000 points.) Somewhere in the middle we might get some wins?

Code

We just need a function that turns a number into a word and into a scrabble score.

scores <- tibble(
  letters = letters,
  score = c(
    1, 3, 3,
    2, 1, 4,
    2, 4, 1,
    8, 5, 1,
    3, 1, 1,
    3, 10, 1,
    1, 1, 1,
    4, 4, 8,
    4, 10
  )
)

convert_word_to_score <- function(word) {
  suppressMessages(str_to_lower(word) %>%
    str_extract_all("[a-z]") %>%
    unlist() %>%
    tibble(letters = .) %>%
    left_join(scores) %>%
    pull(score) %>%
    sum())
}

Giving it a try:

convert_word_to_score("one")
## [1] 3

I’ve grabbed names for numbers off Wiki, so let’s make a table. (Copy paste is way easier in this case than messing around with scrapes or wiki API.)

base_scores <- tribble(
  ~number, ~name,
  0, "Zero",
  1, "One",
  2, "Two",
  3, "Three",
  4, "Four",
  5, "Five",
  6, "Six",
  7, "Seven",
  8, "Eight",
  9, "Nine",
  10, "Ten",
  11, "Eleven",
  12, "Twelve",
  13, "Thirteen",
  14, "Fourteen",
  15, "Fifteen",
  16, "Sixteen",
  17, "Seventeen",
  18, "Eighteen",
  19, "Nineteen",
  20, "Twenty"
) %>%
  rowwise() %>%
  mutate(score = convert_word_to_score(name))

filter(base_scores, number == score) %>%
  knitr::kable()
number name score
12 Twelve 12

Fortunately, my results match Prof. Stewart’s - “Twelve” scores 12 points.

(Let’s do a few plots…

base_scores %>%
  ggplot(aes(x = number, y = score, colour=(number==score))) + geom_point() + geom_line(aes(x = 0:20, y = 0:20, colour=TRUE)) + theme + ggtitle("Twelve is the only number with its own Scrabble score", subtitle = "Line y=x added") + guides(colour=FALSE) + scale

And:

base_scores %>%
  filter(number > 0) %>% # Whoops, don't divide by zero.
  mutate(relative_score = score / number) %>%
  ggplot(aes(x = number, y = relative_score, colour=as.factor(sign(relative_score-1)))) + geom_point() + theme + geom_line(aes(x=1:20,y=1,colour="0")) + labs(
    title = "Small numbers score greater than themselves\n
    but large numbers smaller.",
    y = "Score/number"
  ) + guides(colour=FALSE) + scale

)

I attack this puzzle from two additional angles:

  1. Numbers have more than one name in English.
  2. There are many ways to modify the base score in Scrabble. (blank tile, letter multipliers, word multipliers…)

Additional names

“Twelve” wins, but “Dozen” scores 15, and \(15 \neq 12\). This could push us into another couple of winning words.

Apologies for the massive table. DT doesn’t work with the theme I’m trying now, and I’ve not got it working yet.


alias_scores <- read_csv(here::here("static", "data", "Wiki", "names_of_numbers.csv")) %>%
  separate(3, as.character(1:100), ",") %>%
  gather("key", "name", -Number) %>%
  select(-key) %>%
  drop_na() %>%
  mutate(name = str_extract(name, "[a-zA-Z \\-]+")) %>% # Too many footnotes and references to countries that need dropping
  drop_na() %>%
  rowwise() %>%
  mutate(score = convert_word_to_score(name)) %>%
  arrange(Number)

 knitr::kable(alias_scores, rownames = F)
Number name score
0 Zero 13
0 aught 9
0 cipher 13
0 cypher 16
0 donut 6
0 dot 4
0 duck 11
0 goose egg 11
0 love 7
0 nada 5
0 naught 10
0 nil 3
0 none 4
0 nought 10
0 nowt 7
0 null 4
0 ought 9
0 oh 5
0 squat 14
0 zed 13
0 zilch 19
0 zip 14
0 zippo 18
0 Sunya 8
1 One 3
1 ace 5
1 individual 15
1 single 7
1 singleton 10
1 unary 8
1 unit 4
1 unity 8
1 Pratham 14
2 Two 6
2 binary 11
2 brace 9
2 couple 10
2 couplet 11
2 distich 13
2 deuce 8
2 double 9
2 doubleton 12
2 duad 6
2 duality 11
2 duet 5
2 duo 4
2 dyad 9
2 pair 6
2 span 6
2 twain 8
2 twin 7
2 twosome 12
2 yoke 11
3 Three 8
3 deuce-ace 13
3 leash 8
3 set 3
3 tercet 8
3 ternary 10
3 ternion 7
3 terzetto 17
3 threesome 14
3 tierce 8
3 trey 7
3 triad 6
3 trine 5
3 trinity 10
3 trio 4
3 triplet 9
3 troika 10
3 hat-trick 17
4 Four 7
4 foursome 13
4 quadruplet 22
4 quatern 16
4 quaternary 22
4 quaternity 22
4 quartet 16
4 tetrad 7
5 Five 10
5 cinque 17
5 fin 6
5 fivesome 16
5 pentad 9
5 quint 14
5 quintet 16
5 quintuplet 21
6 Six 10
6 half dozen 25
6 hexad 16
6 sestet 6
6 sextet 13
6 sextuplet 18
6 sise 4
7 Seven 8
7 heptad 12
7 septet 8
7 septuple 12
7 walking stick 26
8 Eight 9
8 octad 8
8 octave 11
8 octet 7
8 octonary 13
8 octuplet 12
8 ogdoad 9
9 Nine 4
9 ennead 7
10 Ten 3
10 deca 7
10 decade 10
10 das 4
11 Eleven 9
11 onze 13
11 ounze 14
11 ounce 7
11 banker 12
12 Twelve 12
12 dozen 15
13 Thirteen 11
13 baker 11
13 long dozen 20
14 Fourteen 11
15 Fifteen 13
16 Sixteen 14
17 Seventeen 12
18 Eighteen 12
19 Nineteen 8
20 Twenty 12
20 score 7
21 Twenty-one 15
21 long score 12
22 Twenty-two 18
22 Deuce-deuce 16
23 Twenty-three 20
24 Twenty-four 19
24 two dozen 21
25 Twenty-five 22
26 Twenty-six 22
27 Twenty-seven 20
28 Twenty-eight 21
29 Twenty-nine 16
30 Thirty 12
31 Thirty-one 15
32 Thirty-two 18
40 Forty 11
40 two-score 13
50 Fifty 14
50 half-century 22
60 Sixty 15
60 three-score 15

About here I realised I need to get better at tidyr, so I dropped into the manual. There might be a better way with purrr, but I liked turning this into tidy data, particularly because I can chuck it at ggplot again.

Anyway, did I get more solutions?


alias_scores %>%
  filter(Number==score) %>%
  knitr::kable()
Number name score
3 set 3
6 sestet 6
8 octad 8
10 decade 10
12 Twelve 12

Sweet, I expanded the solution space 5x!

Let’s have another look at score relative to number:

alias_scores %>%
  filter(Number > 0) %>%
  mutate(relative_score = score / Number) %>%
  ggplot(aes(x = Number, y = relative_score,
             colour=as.factor(sign(relative_score-1)))) + geom_point() + theme + geom_line(aes(x=c(1:60, rep(60,67)),y=1,colour="0")) + labs(
    title = "There are more winning numbers if we take other common name",
    y = "Score/Number"
  ) + scale + guides(colour=FALSE)

Score modifications

Part 1: the blank tile

Quite a few of the early numbers score more than their value. We might get some of these to turn into winners if we replace some of their letters with the blank tile. This is allowed to substitute any letter, but gives no score.

Right now I’m not going to worry about the actual number of blanks in a Scrabble set, and allow myself as many blank tiles as I want. (Which was implicit in the earlier stuff with the actual letters.)

I need to modify the function that makes a score so it can accept modifiers. In this case, the zero multiplier on a given tile:


word_to_score <- function(word, modifier = 1) {

  # I am terrible at writing vectorised functions.

  if (class(modifier) == "list") modifier <- unlist(modifier)

  suppressMessages(str_to_lower(word) %>%
    str_extract_all("[a-z]") %>%
    unlist() %>%
    tibble(letters = ., modifier = modifier) %>%
    left_join(scores) %>%
    summarise(score = sum(score * modifier)) %>%
    pull())
}

The hiliarious thing is that for a word of length \(n\), I have to work out \(2^n\) ways you can fill it in with blank tiles. At least I know this will only decrease the score, so I can start with the ones who over-scored.

I’m not sure about generating all the binary codes with the word’s length, so I recursed. For a small time save, I generate them all now.

binary <- list(crossing(0:1))

for (i in 2:12) {
  binary <- append(
    binary,
    list(
      crossing(binary[[i - 1]], 0:1)
    )
  )
}

binary <- map(binary, transpose) %>%
  flatten() %>%
  tibble(sequence = .) %>%
  rowwise() %>%
  mutate(length = length(sequence)) %>%
  ungroup()

Now I can slap these sequences on the words that over-scored. As I mentioned above, the solutions for 0 are boring, since they are all blank tiles, so I’m filtering them out.

blank_scores <- alias_scores %>%
  mutate(name = name %>%
    str_to_lower() %>%
    str_remove_all("\\W")) %>%
  filter(score > Number) %>%
  mutate(length = str_length(name)) %>%
  left_join(binary) %>%
  rowwise() %>%
  mutate(score_with_blanks = word_to_score(name, sequence))


blank_scores %>%
  select(Number, name, score_with_blanks) %>%
  filter(Number == score_with_blanks) %>%
  unique() %>%
  group_by(Number) %>%
  summarise(name = str_flatten(name, " , ")) %>%
  dplyr::arrange(Number) %>%
   knitr::kable()
Number name
0 zero , aught , cipher , cypher , donut , dot , duck , gooseegg , love , nada , naught , nil , none , nought , nowt , null , ought , oh , squat , zed , zilch , zip , zippo , sunya
1 one , ace , individual , single , singleton , unary , unit , unity , pratham
2 two , binary , brace , couple , couplet , distich , deuce , double , doubleton , duad , duality , duet , duo , dyad , pair , span , twain , twin , twosome , yoke
3 three , deuceace , leash , tercet , ternary , ternion , terzetto , threesome , tierce , trey , triad , trine , trinity , trio , triplet , troika , hattrick
4 four , foursome , quadruplet , quatern , quaternary , quaternity , quartet , tetrad
5 five , cinque , fin , fivesome , pentad , quintet , quintuplet
6 halfdozen , hexad , sextuplet
7 seven , heptad , septet , septuple , walkingstick
8 eight , octave , octonary , octuplet , ogdoad
11 onze , ounze , banker
12 dozen
13 longdozen

Most of the previous losers have at least one winner. 0 and 1 are easy to see why - all blanks gives you 0 points, and most names for 1 have a letter that only has one point.

I’ll just add a function to show where the blank tile(s) are appearing, and I’ll do that table again:

blankify <- function(word, mask) {
  word %>%
    str_extract_all("[a-z]") %>%
    unlist() %>%
    replace(which(mask == 0), "☐") %>%
    str_flatten()
}


blank_scores %>%
    select(Number, sequence, name, score_with_blanks) %>%
    filter(Number == score_with_blanks, Number > 0) %>%
    mutate(name_with_blanks = blankify(name, sequence)) %>%
    select(name, name_with_blanks,Number) %>%
    group_by(Number, name) %>%
    summarise(name_with_blanks = str_flatten(name_with_blanks, " , ")) %>%
  ungroup() %>%
  dplyr::arrange(Number) %>%
   knitr::kable()
Number name name_with_blanks
1 ace ☐☐e , a☐☐
1 individual ☐☐☐☐☐☐☐☐☐l , ☐☐☐☐☐☐☐☐a☐ , ☐☐☐☐☐☐☐u☐☐ , ☐☐☐☐☐i☐☐☐☐ , ☐☐☐i☐☐☐☐☐☐ , ☐n☐☐☐☐☐☐☐☐ , i☐☐☐☐☐☐☐☐☐
1 one ☐☐e , ☐n☐ , o☐☐
1 pratham ☐☐☐☐☐a☐ , ☐☐☐t☐☐☐ , ☐☐a☐☐☐☐ , ☐r☐☐☐☐☐
1 single ☐☐☐☐☐e , ☐☐☐☐l☐ , ☐☐n☐☐☐ , ☐i☐☐☐☐ , s☐☐☐☐☐
1 singleton ☐☐☐☐☐☐☐☐n , ☐☐☐☐☐☐☐o☐ , ☐☐☐☐☐☐t☐☐ , ☐☐☐☐☐e☐☐☐ , ☐☐☐☐l☐☐☐☐ , ☐☐n☐☐☐☐☐☐ , ☐i☐☐☐☐☐☐☐ , s☐☐☐☐☐☐☐☐
1 unary ☐☐☐r☐ , ☐☐a☐☐ , ☐n☐☐☐ , u☐☐☐☐
1 unit ☐☐☐t , ☐☐i☐ , ☐n☐☐ , u☐☐☐
1 unity ☐☐☐t☐ , ☐☐i☐☐ , ☐n☐☐☐ , u☐☐☐☐
2 binary ☐☐☐ar☐ , ☐☐n☐r☐ , ☐☐na☐☐ , ☐i☐☐r☐ , ☐i☐a☐☐ , ☐in☐☐☐
2 brace ☐☐a☐e , ☐r☐☐e , ☐ra☐☐
2 couple ☐☐☐☐le , ☐☐u☐☐e , ☐☐u☐l☐ , ☐o☐☐☐e , ☐o☐☐l☐ , ☐ou☐☐☐
2 couplet ☐☐☐☐☐et , ☐☐☐☐l☐t , ☐☐☐☐le☐ , ☐☐u☐☐☐t , ☐☐u☐☐e☐ , ☐☐u☐l☐☐ , ☐o☐☐☐☐t , ☐o☐☐☐e☐ , ☐o☐☐l☐☐ , ☐ou☐☐☐☐
2 deuce ☐☐u☐e , ☐e☐☐e , ☐eu☐☐ , d☐☐☐☐
2 distich ☐☐☐ti☐☐ , ☐☐s☐i☐☐ , ☐☐st☐☐☐ , ☐i☐☐i☐☐ , ☐i☐t☐☐☐ , ☐is☐☐☐☐ , d☐☐☐☐☐☐
2 double ☐☐☐☐le , ☐☐u☐☐e , ☐☐u☐l☐ , ☐o☐☐☐e , ☐o☐☐l☐ , ☐ou☐☐☐ , d☐☐☐☐☐
2 doubleton ☐☐☐☐☐☐☐on , ☐☐☐☐☐☐t☐n , ☐☐☐☐☐☐to☐ , ☐☐☐☐☐e☐☐n , ☐☐☐☐☐e☐o☐ , ☐☐☐☐☐et☐☐ , ☐☐☐☐l☐☐☐n , ☐☐☐☐l☐☐o☐ , ☐☐☐☐l☐t☐☐ , ☐☐☐☐le☐☐☐ , ☐☐u☐☐☐☐☐n , ☐☐u☐☐☐☐o☐ , ☐☐u☐☐☐t☐☐ , ☐☐u☐☐e☐☐☐ , ☐☐u☐l☐☐☐☐ , ☐o☐☐☐☐☐☐n , ☐o☐☐☐☐☐o☐ , ☐o☐☐☐☐t☐☐ , ☐o☐☐☐e☐☐☐ , ☐o☐☐l☐☐☐☐ , ☐ou☐☐☐☐☐☐ , d☐☐☐☐☐☐☐☐
2 duad ☐☐☐d , ☐ua☐ , d☐☐☐
2 duality ☐☐☐☐it☐ , ☐☐☐l☐t☐ , ☐☐☐li☐☐ , ☐☐a☐☐t☐ , ☐☐a☐i☐☐ , ☐☐al☐☐☐ , ☐u☐☐☐t☐ , ☐u☐☐i☐☐ , ☐u☐l☐☐☐ , ☐ua☐☐☐☐ , d☐☐☐☐☐☐
2 duet ☐☐et , ☐u☐t , ☐ue☐ , d☐☐☐
2 duo ☐uo , d☐☐
2 dyad ☐☐☐d , d☐☐☐
2 pair ☐☐ir , ☐a☐r , ☐ai☐
2 span ☐☐an , s☐☐n , s☐a☐
2 twain ☐☐☐in , ☐☐a☐n , ☐☐ai☐ , t☐☐☐n , t☐☐i☐ , t☐a☐☐
2 twin ☐☐in , t☐☐n , t☐i☐
2 two t☐o
2 twosome ☐☐☐☐o☐e , ☐☐☐s☐☐e , ☐☐☐so☐☐ , ☐☐o☐☐☐e , ☐☐o☐o☐☐ , ☐☐os☐☐☐ , t☐☐☐☐☐e , t☐☐☐o☐☐ , t☐☐s☐☐☐ , t☐o☐☐☐☐
2 yoke ☐o☐e
3 deuceace ☐☐☐☐☐☐c☐ , ☐☐☐☐ea☐e , ☐☐☐c☐☐☐☐ , ☐☐u☐☐a☐e , ☐☐u☐e☐☐e , ☐☐u☐ea☐☐ , ☐e☐☐☐a☐e , ☐e☐☐e☐☐e , ☐e☐☐ea☐☐ , ☐eu☐☐☐☐e , ☐eu☐☐a☐☐ , ☐eu☐e☐☐☐ , d☐☐☐☐☐☐e , d☐☐☐☐a☐☐ , d☐☐☐e☐☐☐ , d☐u☐☐☐☐☐ , de☐☐☐☐☐☐
3 hattrick ☐☐☐☐☐☐c☐ , ☐☐☐tri☐☐ , ☐☐t☐ri☐☐ , ☐☐tt☐i☐☐ , ☐☐ttr☐☐☐ , ☐a☐☐ri☐☐ , ☐a☐t☐i☐☐ , ☐a☐tr☐☐☐ , ☐at☐☐i☐☐ , ☐at☐r☐☐☐ , ☐att☐☐☐☐
3 leash ☐eas☐ , l☐as☐ , le☐s☐ , lea☐☐
3 tercet ☐☐☐c☐☐ , ☐☐r☐et , ☐e☐☐et , ☐er☐☐t , ☐er☐e☐ , t☐☐☐et , t☐r☐☐t , t☐r☐e☐ , te☐☐☐t , te☐☐e☐ , ter☐☐☐
3 ternary ☐☐☐nar☐ , ☐☐r☐ar☐ , ☐☐rn☐r☐ , ☐☐rna☐☐ , ☐e☐☐ar☐ , ☐e☐n☐r☐ , ☐e☐na☐☐ , ☐er☐☐r☐ , ☐er☐a☐☐ , ☐ern☐☐☐ , t☐☐☐ar☐ , t☐☐n☐r☐ , t☐☐na☐☐ , t☐r☐☐r☐ , t☐r☐a☐☐ , t☐rn☐☐☐ , te☐☐☐r☐ , te☐☐a☐☐ , te☐n☐☐☐ , ter☐☐☐☐
3 ternion ☐☐☐☐ion , ☐☐☐n☐on , ☐☐☐ni☐n , ☐☐☐nio☐ , ☐☐r☐☐on , ☐☐r☐i☐n , ☐☐r☐io☐ , ☐☐rn☐☐n , ☐☐rn☐o☐ , ☐☐rni☐☐ , ☐e☐☐☐on , ☐e☐☐i☐n , ☐e☐☐io☐ , ☐e☐n☐☐n , ☐e☐n☐o☐ , ☐e☐ni☐☐ , ☐er☐☐☐n , ☐er☐☐o☐ , ☐er☐i☐☐ , ☐ern☐☐☐ , t☐☐☐☐on , t☐☐☐i☐n , t☐☐☐io☐ , t☐☐n☐☐n , t☐☐n☐o☐ , t☐☐ni☐☐ , t☐r☐☐☐n , t☐r☐☐o☐ , t☐r☐i☐☐ , t☐rn☐☐☐ , te☐☐☐☐n , te☐☐☐o☐ , te☐☐i☐☐ , te☐n☐☐☐ , ter☐☐☐☐
3 terzetto ☐☐☐☐☐tto , ☐☐☐☐e☐to , ☐☐☐☐et☐o , ☐☐☐☐ett☐ , ☐☐r☐☐☐to , ☐☐r☐☐t☐o , ☐☐r☐☐tt☐ , ☐☐r☐e☐☐o , ☐☐r☐e☐t☐ , ☐☐r☐et☐☐ , ☐e☐☐☐☐to , ☐e☐☐☐t☐o , ☐e☐☐☐tt☐ , ☐e☐☐e☐☐o , ☐e☐☐e☐t☐ , ☐e☐☐et☐☐ , ☐er☐☐☐☐o , ☐er☐☐☐t☐ , ☐er☐☐t☐☐ , ☐er☐e☐☐☐ , t☐☐☐☐☐to , t☐☐☐☐t☐o , t☐☐☐☐tt☐ , t☐☐☐e☐☐o , t☐☐☐e☐t☐ , t☐☐☐et☐☐ , t☐r☐☐☐☐o , t☐r☐☐☐t☐ , t☐r☐☐t☐☐ , t☐r☐e☐☐☐ , te☐☐☐☐☐o , te☐☐☐☐t☐ , te☐☐☐t☐☐ , te☐☐e☐☐☐ , ter☐☐☐☐☐
3 three ☐☐ree , t☐☐ee , t☐r☐e , t☐re☐
3 threesome ☐☐☐☐☐☐☐m☐ , ☐☐☐☐☐so☐e , ☐☐☐☐e☐o☐e , ☐☐☐☐es☐☐e , ☐☐☐☐eso☐☐ , ☐☐☐e☐☐o☐e , ☐☐☐e☐s☐☐e , ☐☐☐e☐so☐☐ , ☐☐☐ee☐☐☐e , ☐☐☐ee☐o☐☐ , ☐☐☐ees☐☐☐ , ☐☐r☐☐☐o☐e , ☐☐r☐☐s☐☐e , ☐☐r☐☐so☐☐ , ☐☐r☐e☐☐☐e , ☐☐r☐e☐o☐☐ , ☐☐r☐es☐☐☐ , ☐☐re☐☐☐☐e , ☐☐re☐☐o☐☐ , ☐☐re☐s☐☐☐ , ☐☐ree☐☐☐☐ , t☐☐☐☐☐o☐e , t☐☐☐☐s☐☐e , t☐☐☐☐so☐☐ , t☐☐☐e☐☐☐e , t☐☐☐e☐o☐☐ , t☐☐☐es☐☐☐ , t☐☐e☐☐☐☐e , t☐☐e☐☐o☐☐ , t☐☐e☐s☐☐☐ , t☐☐ee☐☐☐☐ , t☐r☐☐☐☐☐e , t☐r☐☐☐o☐☐ , t☐r☐☐s☐☐☐ , t☐r☐e☐☐☐☐ , t☐re☐☐☐☐☐
3 tierce ☐☐☐☐c☐ , ☐☐er☐e , ☐i☐r☐e , ☐ie☐☐e , ☐ier☐☐ , t☐☐r☐e , t☐e☐☐e , t☐er☐☐ , ti☐☐☐e , ti☐r☐☐ , tie☐☐☐
3 trey tre☐
3 triad ☐☐☐ad , ☐☐i☐d , ☐r☐☐d , ☐ria☐ , t☐☐☐d , t☐ia☐ , tr☐a☐ , tri☐☐
3 trine ☐☐ine , ☐r☐ne , ☐ri☐e , ☐rin☐ , t☐☐ne , t☐i☐e , t☐in☐ , tr☐☐e , tr☐n☐ , tri☐☐
3 trinity ☐☐☐nit☐ , ☐☐i☐it☐ , ☐☐in☐t☐ , ☐☐ini☐☐ , ☐r☐☐it☐ , ☐r☐n☐t☐ , ☐r☐ni☐☐ , ☐ri☐☐t☐ , ☐ri☐i☐☐ , ☐rin☐☐☐ , t☐☐☐it☐ , t☐☐n☐t☐ , t☐☐ni☐☐ , t☐i☐☐t☐ , t☐i☐i☐☐ , t☐in☐☐☐ , tr☐☐☐t☐ , tr☐☐i☐☐ , tr☐n☐☐☐ , tri☐☐☐☐
3 trio ☐rio , t☐io , tr☐o , tri☐
3 triplet ☐☐☐☐let , ☐☐☐p☐☐☐ , ☐☐i☐☐et , ☐☐i☐l☐t , ☐☐i☐le☐ , ☐r☐☐☐et , ☐r☐☐l☐t , ☐r☐☐le☐ , ☐ri☐☐☐t , ☐ri☐☐e☐ , ☐ri☐l☐☐ , t☐☐☐☐et , t☐☐☐l☐t , t☐☐☐le☐ , t☐i☐☐☐t , t☐i☐☐e☐ , t☐i☐l☐☐ , tr☐☐☐☐t , tr☐☐☐e☐ , tr☐☐l☐☐ , tri☐☐☐☐
3 troika ☐☐oi☐a , ☐r☐i☐a , ☐ro☐☐a , ☐roi☐☐ , t☐☐i☐a , t☐o☐☐a , t☐oi☐☐ , tr☐☐☐a , tr☐i☐☐ , tro☐☐☐
4 four f☐☐☐
4 foursome ☐☐☐☐☐☐me , ☐☐☐☐☐om☐ , ☐☐☐☐s☐m☐ , ☐☐☐r☐☐m☐ , ☐☐☐rso☐e , ☐☐u☐☐☐m☐ , ☐☐u☐so☐e , ☐☐ur☐o☐e , ☐☐urs☐☐e , ☐☐urso☐☐ , ☐o☐☐☐☐m☐ , ☐o☐☐so☐e , ☐o☐r☐o☐e , ☐o☐rs☐☐e , ☐o☐rso☐☐ , ☐ou☐☐o☐e , ☐ou☐s☐☐e , ☐ou☐so☐☐ , ☐our☐☐☐e , ☐our☐o☐☐ , ☐ours☐☐☐ , f☐☐☐☐☐☐☐
4 quadruplet ☐☐☐☐☐☐p☐☐t , ☐☐☐☐☐☐p☐e☐ , ☐☐☐☐☐☐pl☐☐ , ☐☐☐☐☐u☐let , ☐☐☐☐☐up☐☐☐ , ☐☐☐☐r☐☐let , ☐☐☐☐r☐p☐☐☐ , ☐☐☐☐ru☐☐et , ☐☐☐☐ru☐l☐t , ☐☐☐☐ru☐le☐ , ☐☐☐d☐☐☐☐et , ☐☐☐d☐☐☐l☐t , ☐☐☐d☐☐☐le☐ , ☐☐☐d☐u☐☐☐t , ☐☐☐d☐u☐☐e☐ , ☐☐☐d☐u☐l☐☐ , ☐☐☐dr☐☐☐☐t , ☐☐☐dr☐☐☐e☐ , ☐☐☐dr☐☐l☐☐ , ☐☐☐dru☐☐☐☐ , ☐☐a☐☐☐☐let , ☐☐a☐☐☐p☐☐☐ , ☐☐a☐☐u☐☐et , ☐☐a☐☐u☐l☐t , ☐☐a☐☐u☐le☐ , ☐☐a☐r☐☐☐et , ☐☐a☐r☐☐l☐t , ☐☐a☐r☐☐le☐ , ☐☐a☐ru☐☐☐t , ☐☐a☐ru☐☐e☐ , ☐☐a☐ru☐l☐☐ , ☐☐ad☐☐☐☐☐t , ☐☐ad☐☐☐☐e☐ , ☐☐ad☐☐☐l☐☐ , ☐☐ad☐u☐☐☐☐ , ☐☐adr☐☐☐☐☐ , ☐u☐☐☐☐☐let , ☐u☐☐☐☐p☐☐☐ , ☐u☐☐☐u☐☐et , ☐u☐☐☐u☐l☐t , ☐u☐☐☐u☐le☐ , ☐u☐☐r☐☐☐et , ☐u☐☐r☐☐l☐t , ☐u☐☐r☐☐le☐ , ☐u☐☐ru☐☐☐t , ☐u☐☐ru☐☐e☐ , ☐u☐☐ru☐l☐☐ , ☐u☐d☐☐☐☐☐t , ☐u☐d☐☐☐☐e☐ , ☐u☐d☐☐☐l☐☐ , ☐u☐d☐u☐☐☐☐ , ☐u☐dr☐☐☐☐☐ , ☐ua☐☐☐☐☐et , ☐ua☐☐☐☐l☐t , ☐ua☐☐☐☐le☐ , ☐ua☐☐u☐☐☐t , ☐ua☐☐u☐☐e☐ , ☐ua☐☐u☐l☐☐ , ☐ua☐r☐☐☐☐t , ☐ua☐r☐☐☐e☐ , ☐ua☐r☐☐l☐☐ , ☐ua☐ru☐☐☐☐ , ☐uad☐☐☐☐☐☐
4 quartet ☐☐☐rtet , ☐☐a☐tet , ☐☐ar☐et , ☐☐art☐t , ☐☐arte☐ , ☐u☐☐tet , ☐u☐r☐et , ☐u☐rt☐t , ☐u☐rte☐ , ☐ua☐☐et , ☐ua☐t☐t , ☐ua☐te☐ , ☐uar☐☐t , ☐uar☐e☐ , ☐uart☐☐
4 quatern ☐☐☐tern , ☐☐a☐ern , ☐☐at☐rn , ☐☐ate☐n , ☐☐ater☐ , ☐u☐☐ern , ☐u☐t☐rn , ☐u☐te☐n , ☐u☐ter☐ , ☐ua☐☐rn , ☐ua☐e☐n , ☐ua☐er☐ , ☐uat☐☐n , ☐uat☐r☐ , ☐uate☐☐
4 quaternary ☐☐☐☐☐☐☐☐☐y , ☐☐☐☐☐rnar☐ , ☐☐☐☐e☐nar☐ , ☐☐☐☐er☐ar☐ , ☐☐☐☐ern☐r☐ , ☐☐☐☐erna☐☐ , ☐☐☐t☐☐nar☐ , ☐☐☐t☐r☐ar☐ , ☐☐☐t☐rn☐r☐ , ☐☐☐t☐rna☐☐ , ☐☐☐te☐☐ar☐ , ☐☐☐te☐n☐r☐ , ☐☐☐te☐na☐☐ , ☐☐☐ter☐☐r☐ , ☐☐☐ter☐a☐☐ , ☐☐☐tern☐☐☐ , ☐☐a☐☐☐nar☐ , ☐☐a☐☐r☐ar☐ , ☐☐a☐☐rn☐r☐ , ☐☐a☐☐rna☐☐ , ☐☐a☐e☐☐ar☐ , ☐☐a☐e☐n☐r☐ , ☐☐a☐e☐na☐☐ , ☐☐a☐er☐☐r☐ , ☐☐a☐er☐a☐☐ , ☐☐a☐ern☐☐☐ , ☐☐at☐☐☐ar☐ , ☐☐at☐☐n☐r☐ , ☐☐at☐☐na☐☐ , ☐☐at☐r☐☐r☐ , ☐☐at☐r☐a☐☐ , ☐☐at☐rn☐☐☐ , ☐☐ate☐☐☐r☐ , ☐☐ate☐☐a☐☐ , ☐☐ate☐n☐☐☐ , ☐☐ater☐☐☐☐ , ☐u☐☐☐☐nar☐ , ☐u☐☐☐r☐ar☐ , ☐u☐☐☐rn☐r☐ , ☐u☐☐☐rna☐☐ , ☐u☐☐e☐☐ar☐ , ☐u☐☐e☐n☐r☐ , ☐u☐☐e☐na☐☐ , ☐u☐☐er☐☐r☐ , ☐u☐☐er☐a☐☐ , ☐u☐☐ern☐☐☐ , ☐u☐t☐☐☐ar☐ , ☐u☐t☐☐n☐r☐ , ☐u☐t☐☐na☐☐ , ☐u☐t☐r☐☐r☐ , ☐u☐t☐r☐a☐☐ , ☐u☐t☐rn☐☐☐ , ☐u☐te☐☐☐r☐ , ☐u☐te☐☐a☐☐ , ☐u☐te☐n☐☐☐ , ☐u☐ter☐☐☐☐ , ☐ua☐☐☐☐ar☐ , ☐ua☐☐☐n☐r☐ , ☐ua☐☐☐na☐☐ , ☐ua☐☐r☐☐r☐ , ☐ua☐☐r☐a☐☐ , ☐ua☐☐rn☐☐☐ , ☐ua☐e☐☐☐r☐ , ☐ua☐e☐☐a☐☐ , ☐ua☐e☐n☐☐☐ , ☐ua☐er☐☐☐☐ , ☐uat☐☐☐☐r☐ , ☐uat☐☐☐a☐☐ , ☐uat☐☐n☐☐☐ , ☐uat☐r☐☐☐☐ , ☐uate☐☐☐☐☐
4 quaternity ☐☐☐☐☐☐☐☐☐y , ☐☐☐☐☐rnit☐ , ☐☐☐☐e☐nit☐ , ☐☐☐☐er☐it☐ , ☐☐☐☐ern☐t☐ , ☐☐☐☐erni☐☐ , ☐☐☐t☐☐nit☐ , ☐☐☐t☐r☐it☐ , ☐☐☐t☐rn☐t☐ , ☐☐☐t☐rni☐☐ , ☐☐☐te☐☐it☐ , ☐☐☐te☐n☐t☐ , ☐☐☐te☐ni☐☐ , ☐☐☐ter☐☐t☐ , ☐☐☐ter☐i☐☐ , ☐☐☐tern☐☐☐ , ☐☐a☐☐☐nit☐ , ☐☐a☐☐r☐it☐ , ☐☐a☐☐rn☐t☐ , ☐☐a☐☐rni☐☐ , ☐☐a☐e☐☐it☐ , ☐☐a☐e☐n☐t☐ , ☐☐a☐e☐ni☐☐ , ☐☐a☐er☐☐t☐ , ☐☐a☐er☐i☐☐ , ☐☐a☐ern☐☐☐ , ☐☐at☐☐☐it☐ , ☐☐at☐☐n☐t☐ , ☐☐at☐☐ni☐☐ , ☐☐at☐r☐☐t☐ , ☐☐at☐r☐i☐☐ , ☐☐at☐rn☐☐☐ , ☐☐ate☐☐☐t☐ , ☐☐ate☐☐i☐☐ , ☐☐ate☐n☐☐☐ , ☐☐ater☐☐☐☐ , ☐u☐☐☐☐nit☐ , ☐u☐☐☐r☐it☐ , ☐u☐☐☐rn☐t☐ , ☐u☐☐☐rni☐☐ , ☐u☐☐e☐☐it☐ , ☐u☐☐e☐n☐t☐ , ☐u☐☐e☐ni☐☐ , ☐u☐☐er☐☐t☐ , ☐u☐☐er☐i☐☐ , ☐u☐☐ern☐☐☐ , ☐u☐t☐☐☐it☐ , ☐u☐t☐☐n☐t☐ , ☐u☐t☐☐ni☐☐ , ☐u☐t☐r☐☐t☐ , ☐u☐t☐r☐i☐☐ , ☐u☐t☐rn☐☐☐ , ☐u☐te☐☐☐t☐ , ☐u☐te☐☐i☐☐ , ☐u☐te☐n☐☐☐ , ☐u☐ter☐☐☐☐ , ☐ua☐☐☐☐it☐ , ☐ua☐☐☐n☐t☐ , ☐ua☐☐☐ni☐☐ , ☐ua☐☐r☐☐t☐ , ☐ua☐☐r☐i☐☐ , ☐ua☐☐rn☐☐☐ , ☐ua☐e☐☐☐t☐ , ☐ua☐e☐☐i☐☐ , ☐ua☐e☐n☐☐☐ , ☐ua☐er☐☐☐☐ , ☐uat☐☐☐☐t☐ , ☐uat☐☐☐i☐☐ , ☐uat☐☐n☐☐☐ , ☐uat☐r☐☐☐☐ , ☐uate☐☐☐☐☐
4 tetrad ☐☐☐rad , ☐☐t☐ad , ☐☐tr☐d , ☐e☐☐ad , ☐e☐r☐d , ☐et☐☐d , ☐etra☐ , t☐☐☐ad , t☐☐r☐d , t☐t☐☐d , t☐tra☐ , te☐☐☐d , te☐ra☐ , tet☐a☐ , tetr☐☐
5 cinque c☐☐☐ue , c☐n☐☐e , c☐n☐u☐ , ci☐☐☐e , ci☐☐u☐ , cin☐☐☐
5 fin f☐n , fi☐
5 five ☐☐ve , ☐iv☐ , f☐☐e , fi☐☐
5 fivesome ☐☐☐☐☐ome , ☐☐☐☐s☐me , ☐☐☐☐som☐ , ☐☐☐e☐☐me , ☐☐☐e☐om☐ , ☐☐☐es☐m☐ , ☐☐v☐☐☐☐e , ☐☐v☐☐o☐☐ , ☐☐v☐s☐☐☐ , ☐☐ve☐☐☐☐ , ☐i☐☐☐☐me , ☐i☐☐☐om☐ , ☐i☐☐s☐m☐ , ☐i☐e☐☐m☐ , ☐i☐eso☐e , ☐iv☐☐☐☐☐ , f☐☐☐☐☐☐e , f☐☐☐☐o☐☐ , f☐☐☐s☐☐☐ , f☐☐e☐☐☐☐ , fi☐☐☐☐☐☐
5 pentad ☐☐ntad , ☐e☐tad , ☐en☐ad , ☐ent☐d , p☐☐☐☐d , p☐☐ta☐ , p☐n☐a☐ , p☐nt☐☐ , pe☐☐a☐ , pe☐t☐☐ , pen☐☐☐
5 quintet ☐☐intet , ☐u☐ntet , ☐ui☐tet , ☐uin☐et , ☐uint☐t , ☐uinte☐
5 quintuplet ☐☐☐☐☐☐p☐et , ☐☐☐☐☐☐pl☐t , ☐☐☐☐☐☐ple☐ , ☐☐☐☐☐up☐☐t , ☐☐☐☐☐up☐e☐ , ☐☐☐☐☐upl☐☐ , ☐☐☐☐t☐p☐☐t , ☐☐☐☐t☐p☐e☐ , ☐☐☐☐t☐pl☐☐ , ☐☐☐☐tu☐let , ☐☐☐☐tup☐☐☐ , ☐☐☐n☐☐p☐☐t , ☐☐☐n☐☐p☐e☐ , ☐☐☐n☐☐pl☐☐ , ☐☐☐n☐u☐let , ☐☐☐n☐up☐☐☐ , ☐☐☐nt☐☐let , ☐☐☐nt☐p☐☐☐ , ☐☐☐ntu☐☐et , ☐☐☐ntu☐l☐t , ☐☐☐ntu☐le☐ , ☐☐i☐☐☐p☐☐t , ☐☐i☐☐☐p☐e☐ , ☐☐i☐☐☐pl☐☐ , ☐☐i☐☐u☐let , ☐☐i☐☐up☐☐☐ , ☐☐i☐t☐☐let , ☐☐i☐t☐p☐☐☐ , ☐☐i☐tu☐☐et , ☐☐i☐tu☐l☐t , ☐☐i☐tu☐le☐ , ☐☐in☐☐☐let , ☐☐in☐☐p☐☐☐ , ☐☐in☐u☐☐et , ☐☐in☐u☐l☐t , ☐☐in☐u☐le☐ , ☐☐int☐☐☐et , ☐☐int☐☐l☐t , ☐☐int☐☐le☐ , ☐☐intu☐☐☐t , ☐☐intu☐☐e☐ , ☐☐intu☐l☐☐ , ☐u☐☐☐☐p☐☐t , ☐u☐☐☐☐p☐e☐ , ☐u☐☐☐☐pl☐☐ , ☐u☐☐☐u☐let , ☐u☐☐☐up☐☐☐ , ☐u☐☐t☐☐let , ☐u☐☐t☐p☐☐☐ , ☐u☐☐tu☐☐et , ☐u☐☐tu☐l☐t , ☐u☐☐tu☐le☐ , ☐u☐n☐☐☐let , ☐u☐n☐☐p☐☐☐ , ☐u☐n☐u☐☐et , ☐u☐n☐u☐l☐t , ☐u☐n☐u☐le☐ , ☐u☐nt☐☐☐et , ☐u☐nt☐☐l☐t , ☐u☐nt☐☐le☐ , ☐u☐ntu☐☐☐t , ☐u☐ntu☐☐e☐ , ☐u☐ntu☐l☐☐ , ☐ui☐☐☐☐let , ☐ui☐☐☐p☐☐☐ , ☐ui☐☐u☐☐et , ☐ui☐☐u☐l☐t , ☐ui☐☐u☐le☐ , ☐ui☐t☐☐☐et , ☐ui☐t☐☐l☐t , ☐ui☐t☐☐le☐ , ☐ui☐tu☐☐☐t , ☐ui☐tu☐☐e☐ , ☐ui☐tu☐l☐☐ , ☐uin☐☐☐☐et , ☐uin☐☐☐l☐t , ☐uin☐☐☐le☐ , ☐uin☐u☐☐☐t , ☐uin☐u☐☐e☐ , ☐uin☐u☐l☐☐ , ☐uint☐☐☐☐t , ☐uint☐☐☐e☐ , ☐uint☐☐l☐☐ , ☐uintu☐☐☐☐
6 halfdozen ☐☐☐f☐☐☐en , ☐☐☐f☐o☐☐n , ☐☐☐f☐o☐e☐ , ☐☐☐fd☐☐☐☐ , ☐☐l☐do☐en , ☐☐lf☐☐☐☐n , ☐☐lf☐☐☐e☐ , ☐☐lf☐o☐☐☐ , ☐a☐☐do☐en , ☐a☐f☐☐☐☐n , ☐a☐f☐☐☐e☐ , ☐a☐f☐o☐☐☐ , ☐al☐d☐☐en , ☐al☐do☐☐n , ☐al☐do☐e☐ , ☐alf☐☐☐☐☐ , h☐☐☐☐☐☐en , h☐☐☐☐o☐☐n , h☐☐☐☐o☐e☐ , h☐☐☐d☐☐☐☐ , h☐l☐☐☐☐☐n , h☐l☐☐☐☐e☐ , h☐l☐☐o☐☐☐ , ha☐☐☐☐☐☐n , ha☐☐☐☐☐e☐ , ha☐☐☐o☐☐☐ , hal☐☐☐☐☐☐
6 hexad h☐☐☐d , he☐a☐
6 sextuplet ☐☐☐☐☐plet , ☐☐☐☐up☐et , ☐☐☐☐upl☐t , ☐☐☐☐uple☐ , ☐☐☐t☐p☐et , ☐☐☐t☐pl☐t , ☐☐☐t☐ple☐ , ☐☐☐tup☐☐t , ☐☐☐tup☐e☐ , ☐☐☐tupl☐☐ , ☐e☐☐☐p☐et , ☐e☐☐☐pl☐t , ☐e☐☐☐ple☐ , ☐e☐☐up☐☐t , ☐e☐☐up☐e☐ , ☐e☐☐upl☐☐ , ☐e☐t☐p☐☐t , ☐e☐t☐p☐e☐ , ☐e☐t☐pl☐☐ , ☐e☐tu☐let , ☐e☐tup☐☐☐ , s☐☐☐☐p☐et , s☐☐☐☐pl☐t , s☐☐☐☐ple☐ , s☐☐☐up☐☐t , s☐☐☐up☐e☐ , s☐☐☐upl☐☐ , s☐☐t☐p☐☐t , s☐☐t☐p☐e☐ , s☐☐t☐pl☐☐ , s☐☐tu☐let , s☐☐tup☐☐☐ , se☐☐☐p☐☐t , se☐☐☐p☐e☐ , se☐☐☐pl☐☐ , se☐☐u☐let , se☐☐up☐☐☐ , se☐t☐☐let , se☐t☐p☐☐☐ , se☐tu☐☐et , se☐tu☐l☐t , se☐tu☐le☐
7 heptad ☐☐ptad , ☐ep☐ad , ☐ept☐d , h☐☐☐ad , h☐☐t☐d , h☐p☐☐☐ , he☐☐☐d , he☐ta☐
7 septet ☐eptet , s☐ptet , sep☐et , sept☐t , septe☐
7 septuple ☐☐☐tuple , ☐☐p☐☐p☐e , ☐☐p☐☐pl☐ , ☐☐p☐up☐☐ , ☐☐pt☐p☐☐ , ☐☐ptu☐le , ☐e☐☐uple , ☐e☐t☐ple , ☐e☐tup☐e , ☐e☐tupl☐ , ☐ep☐☐p☐☐ , ☐ep☐u☐le , ☐ept☐☐le , ☐eptu☐☐e , ☐eptu☐l☐ , s☐☐☐uple , s☐☐t☐ple , s☐☐tup☐e , s☐☐tupl☐ , s☐p☐☐p☐☐ , s☐p☐u☐le , s☐pt☐☐le , s☐ptu☐☐e , s☐ptu☐l☐ , se☐☐☐ple , se☐☐up☐e , se☐☐upl☐ , se☐t☐p☐e , se☐t☐pl☐ , se☐tup☐☐ , sep☐☐☐le , sep☐u☐☐e , sep☐u☐l☐ , sept☐☐☐e , sept☐☐l☐ , septu☐☐☐
7 seven ☐even , s☐ven , sev☐n , seve☐
7 walkingstick ☐☐☐☐☐☐☐☐ti☐k , ☐☐☐☐☐☐☐s☐i☐k , ☐☐☐☐☐☐☐st☐☐k , ☐☐☐☐☐☐g☐☐☐☐k , ☐☐☐☐☐☐g☐tic☐ , ☐☐☐☐☐☐gs☐ic☐ , ☐☐☐☐☐☐gst☐c☐ , ☐☐☐☐☐n☐☐☐i☐k , ☐☐☐☐☐n☐☐t☐☐k , ☐☐☐☐☐n☐s☐☐☐k , ☐☐☐☐☐n☐stic☐ , ☐☐☐☐☐ng☐☐ic☐ , ☐☐☐☐☐ng☐t☐c☐ , ☐☐☐☐☐ngs☐☐c☐ , ☐☐☐☐i☐☐☐☐i☐k , ☐☐☐☐i☐☐☐t☐☐k , ☐☐☐☐i☐☐s☐☐☐k , ☐☐☐☐i☐☐stic☐ , ☐☐☐☐i☐g☐☐ic☐ , ☐☐☐☐i☐g☐t☐c☐ , ☐☐☐☐i☐gs☐☐c☐ , ☐☐☐☐in☐☐☐☐☐k , ☐☐☐☐in☐☐tic☐ , ☐☐☐☐in☐s☐ic☐ , ☐☐☐☐in☐st☐c☐ , ☐☐☐☐ing☐☐☐c☐ , ☐☐☐☐ingsti☐☐ , ☐☐☐k☐☐☐☐ti☐☐ , ☐☐☐k☐☐☐s☐i☐☐ , ☐☐☐k☐☐☐st☐☐☐ , ☐☐☐k☐☐g☐☐☐☐☐ , ☐☐☐k☐n☐☐☐i☐☐ , ☐☐☐k☐n☐☐t☐☐☐ , ☐☐☐k☐n☐s☐☐☐☐ , ☐☐☐ki☐☐☐☐i☐☐ , ☐☐☐ki☐☐☐t☐☐☐ , ☐☐☐ki☐☐s☐☐☐☐ , ☐☐☐kin☐☐☐☐☐☐ , ☐☐l☐☐☐☐☐☐i☐k , ☐☐l☐☐☐☐☐t☐☐k , ☐☐l☐☐☐☐s☐☐☐k , ☐☐l☐☐☐☐stic☐ , ☐☐l☐☐☐g☐☐ic☐ , ☐☐l☐☐☐g☐t☐c☐ , ☐☐l☐☐☐gs☐☐c☐ , ☐☐l☐☐n☐☐☐☐☐k , ☐☐l☐☐n☐☐tic☐ , ☐☐l☐☐n☐s☐ic☐ , ☐☐l☐☐n☐st☐c☐ , ☐☐l☐☐ng☐☐☐c☐ , ☐☐l☐☐ngsti☐☐ , ☐☐l☐i☐☐☐☐☐☐k , ☐☐l☐i☐☐☐tic☐ , ☐☐l☐i☐☐s☐ic☐ , ☐☐l☐i☐☐st☐c☐ , ☐☐l☐i☐g☐☐☐c☐ , ☐☐l☐i☐gsti☐☐ , ☐☐l☐in☐☐☐ic☐ , ☐☐l☐in☐☐t☐c☐ , ☐☐l☐in☐s☐☐c☐ , ☐☐l☐ing☐ti☐☐ , ☐☐l☐ings☐i☐☐ , ☐☐l☐ingst☐☐☐ , ☐☐lk☐☐☐☐☐i☐☐ , ☐☐lk☐☐☐☐t☐☐☐ , ☐☐lk☐☐☐s☐☐☐☐ , ☐☐lk☐n☐☐☐☐☐☐ , ☐☐lki☐☐☐☐☐☐☐ , ☐a☐☐☐☐☐☐☐i☐k , ☐a☐☐☐☐☐☐t☐☐k , ☐a☐☐☐☐☐s☐☐☐k , ☐a☐☐☐☐☐stic☐ , ☐a☐☐☐☐g☐☐ic☐ , ☐a☐☐☐☐g☐t☐c☐ , ☐a☐☐☐☐gs☐☐c☐ , ☐a☐☐☐n☐☐☐☐☐k , ☐a☐☐☐n☐☐tic☐ , ☐a☐☐☐n☐s☐ic☐ , ☐a☐☐☐n☐st☐c☐ , ☐a☐☐☐ng☐☐☐c☐ , ☐a☐☐☐ngsti☐☐ , ☐a☐☐i☐☐☐☐☐☐k , ☐a☐☐i☐☐☐tic☐ , ☐a☐☐i☐☐s☐ic☐ , ☐a☐☐i☐☐st☐c☐ , ☐a☐☐i☐g☐☐☐c☐ , ☐a☐☐i☐gsti☐☐ , ☐a☐☐in☐☐☐ic☐ , ☐a☐☐in☐☐t☐c☐ , ☐a☐☐in☐s☐☐c☐ , ☐a☐☐ing☐ti☐☐ , ☐a☐☐ings☐i☐☐ , ☐a☐☐ingst☐☐☐ , ☐a☐k☐☐☐☐☐i☐☐ , ☐a☐k☐☐☐☐t☐☐☐ , ☐a☐k☐☐☐s☐☐☐☐ , ☐a☐k☐n☐☐☐☐☐☐ , ☐a☐ki☐☐☐☐☐☐☐ , ☐al☐☐☐☐☐☐☐☐k , ☐al☐☐☐☐☐tic☐ , ☐al☐☐☐☐s☐ic☐ , ☐al☐☐☐☐st☐c☐ , ☐al☐☐☐g☐☐☐c☐ , ☐al☐☐☐gsti☐☐ , ☐al☐☐n☐☐☐ic☐ , ☐al☐☐n☐☐t☐c☐ , ☐al☐☐n☐s☐☐c☐ , ☐al☐☐ng☐ti☐☐ , ☐al☐☐ngs☐i☐☐ , ☐al☐☐ngst☐☐☐ , ☐al☐i☐☐☐☐ic☐ , ☐al☐i☐☐☐t☐c☐ , ☐al☐i☐☐s☐☐c☐ , ☐al☐i☐g☐ti☐☐ , ☐al☐i☐gs☐i☐☐ , ☐al☐i☐gst☐☐☐ , ☐al☐in☐☐☐☐c☐ , ☐al☐in☐sti☐☐ , ☐al☐ing☐☐i☐☐ , ☐al☐ing☐t☐☐☐ , ☐al☐ings☐☐☐☐ , ☐alk☐☐☐☐☐☐☐☐ , w☐☐☐☐☐☐☐☐☐c☐ , w☐☐☐☐☐☐sti☐☐ , w☐☐☐☐☐g☐☐i☐☐ , w☐☐☐☐☐g☐t☐☐☐ , w☐☐☐☐☐gs☐☐☐☐ , w☐☐☐☐n☐☐ti☐☐ , w☐☐☐☐n☐s☐i☐☐ , w☐☐☐☐n☐st☐☐☐ , w☐☐☐☐ng☐☐☐☐☐ , w☐☐☐i☐☐☐ti☐☐ , w☐☐☐i☐☐s☐i☐☐ , w☐☐☐i☐☐st☐☐☐ , w☐☐☐i☐g☐☐☐☐☐ , w☐☐☐in☐☐☐i☐☐ , w☐☐☐in☐☐t☐☐☐ , w☐☐☐in☐s☐☐☐☐ , w☐l☐☐☐☐☐ti☐☐ , w☐l☐☐☐☐s☐i☐☐ , w☐l☐☐☐☐st☐☐☐ , w☐l☐☐☐g☐☐☐☐☐ , w☐l☐☐n☐☐☐i☐☐ , w☐l☐☐n☐☐t☐☐☐ , w☐l☐☐n☐s☐☐☐☐ , w☐l☐i☐☐☐☐i☐☐ , w☐l☐i☐☐☐t☐☐☐ , w☐l☐i☐☐s☐☐☐☐ , w☐l☐in☐☐☐☐☐☐ , wa☐☐☐☐☐☐ti☐☐ , wa☐☐☐☐☐s☐i☐☐ , wa☐☐☐☐☐st☐☐☐ , wa☐☐☐☐g☐☐☐☐☐ , wa☐☐☐n☐☐☐i☐☐ , wa☐☐☐n☐☐t☐☐☐ , wa☐☐☐n☐s☐☐☐☐ , wa☐☐i☐☐☐☐i☐☐ , wa☐☐i☐☐☐t☐☐☐ , wa☐☐i☐☐s☐☐☐☐ , wa☐☐in☐☐☐☐☐☐ , wal☐☐☐☐☐☐i☐☐ , wal☐☐☐☐☐t☐☐☐ , wal☐☐☐☐s☐☐☐☐ , wal☐☐n☐☐☐☐☐☐ , wal☐i☐☐☐☐☐☐☐
8 eight ☐ight , e☐ght , eigh☐
8 octave ☐c☐☐ve , ☐c☐av☐ , ☐ct☐v☐ , o☐tave , oc☐☐v☐
8 octonary ☐☐☐onary , ☐☐t☐nary , ☐☐to☐ary , ☐☐ton☐ry , ☐☐tona☐y , ☐c☐☐☐☐ry , ☐c☐☐☐a☐y , ☐c☐☐n☐☐y , ☐c☐o☐☐☐y , ☐ct☐☐☐☐y , ☐ctonar☐ , o☐☐☐nary , o☐☐o☐ary , o☐☐on☐ry , o☐☐ona☐y , o☐t☐☐ary , o☐t☐n☐ry , o☐t☐na☐y , o☐to☐☐ry , o☐to☐a☐y , o☐ton☐☐y , oc☐☐☐☐☐y , oc☐onar☐ , oct☐nar☐ , octo☐ar☐ , octon☐r☐ , octona☐☐
8 octuplet ☐☐tuplet , ☐c☐☐p☐et , ☐c☐☐pl☐t , ☐c☐☐ple☐ , ☐c☐up☐☐t , ☐c☐up☐e☐ , ☐c☐upl☐☐ , ☐ct☐p☐☐t , ☐ct☐p☐e☐ , ☐ct☐pl☐☐ , ☐ctu☐let , ☐ctup☐☐☐ , o☐☐uplet , o☐t☐plet , o☐tup☐et , o☐tupl☐t , o☐tuple☐ , oc☐☐p☐☐t , oc☐☐p☐e☐ , oc☐☐pl☐☐ , oc☐u☐let , oc☐up☐☐☐ , oct☐☐let , oct☐p☐☐☐ , octu☐☐et , octu☐l☐t , octu☐le☐
8 ogdoad ☐gdoad , ogd☐ad , ogdo☐d
11 banker b☐nker , ba☐ker , bank☐r , banke☐
11 onze ☐☐ze , ☐nz☐ , o☐z☐
11 ounze ☐☐☐ze , ☐☐nz☐ , ☐u☐z☐ , o☐☐z☐
12 dozen ☐☐zen , ☐oz☐n , ☐oze☐ , d☐z☐☐
13 longdozen ☐☐☐☐☐ozen , ☐☐☐☐d☐z☐n , ☐☐☐☐d☐ze☐ , ☐☐☐☐doz☐☐ , ☐☐☐g☐☐z☐n , ☐☐☐g☐☐ze☐ , ☐☐☐g☐oz☐☐ , ☐☐n☐☐☐zen , ☐☐n☐☐oz☐n , ☐☐n☐☐oze☐ , ☐☐n☐d☐z☐☐ , ☐☐ng☐☐z☐☐ , ☐o☐☐☐☐zen , ☐o☐☐☐oz☐n , ☐o☐☐☐oze☐ , ☐o☐☐d☐z☐☐ , ☐o☐g☐☐z☐☐ , ☐on☐☐☐z☐n , ☐on☐☐☐ze☐ , ☐on☐☐oz☐☐ , l☐☐☐☐☐zen , l☐☐☐☐oz☐n , l☐☐☐☐oze☐ , l☐☐☐d☐z☐☐ , l☐☐g☐☐z☐☐ , l☐n☐☐☐z☐n , l☐n☐☐☐ze☐ , l☐n☐☐oz☐☐ , lo☐☐☐☐z☐n , lo☐☐☐☐ze☐ , lo☐☐☐oz☐☐ , lon☐☐☐z☐☐

Moving on

This suggests a method that can be extended for dealing with double/triple letters, and even triple words, but I feel this post is long enough for now.